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We implemented a full tracking pipeline of red blood cells, including automated detection with a 

Hough Circle Transform, and deformable tracking with our own Python implementation of 

Distance Regularized Level Set Evolution (yes it was written just for this class!) on top of basic 

image processing primitives provided by Python’s scikit-image library (e.g. Gaussian Filters).  We 

analyze the behavior of this tracking system and its shortcomings.  

 

 

FIG. 1.  An example of a tracked cell sequence. The original 

microscopy data is shown in a cyan colored background while the tracked 
segmentation result is overlaid in red. See results section for details.  

INTRODUCTION 

In generating and analyzing large amounts of data, 

automated methods are important tool in allowing 

researchers to obtain quantitative and statistically 

significant information. For microscopy applications, the 

data of interest is often detection and analysis of cells, 

including their geometry, shape and position. 

For this project, we chose to focus on red blood cells, 

which are of interest to malaria researchers. The leading 

source of malaria infection worldwide is the parasite 

Plasmodium falciparum, which inflects red blood cells. The 

ability to automatically detect red blood cells would make it 

possible to automatically detect and check for the 

prevalence of the parasite in microscopy data. 

Additionally, we focused on tracking red blood cells 

which were placed in a waveguide constructed by Saara 

Khan & Kara Brower, from the Fordyce & Solgaard Labs 

at Stanford. We are acknowledge and are thankful for their 

data. In the conditions of the waveguide, there is often 

squeezing of the red blood cells, which provides useful 

information about deformability, which can be an indicator 

of P. falciparum infection. However, this requires 

deformable tracking of the red blood cells, which is still an 

open problem in the image analytics literate [6].  

 

 

 

 

 

 

 

I. RELATED WORK 

There have been several published methods of tracking 

red blood cells from that past few years.  

One example from 2012 [7], focuses solely on detection 

of red blood cells using a Hough Transform. In the course 

of this work, the Hough Transform is used as both an 

automated detection and post-processing method. See the 

section on detection. 

Another example from 2014 [8], focused on tracking red 

blood cells in very noisy environments, as their data is from 

intravital microscopy.  

A general deformable tracking method using active 

meshes was documented in 2011 [6]. This allows for 

tracking of surface contour elements across the entire 

sequence. Since this application only requires identification 

and segmentation of results, we decided to focus our 

energies on a simpler method.  

A classic area of object contour detection is active 

contour methods (also called snake methods). Geodesic 

active contours have been shown to be successful in 

demonstrating active tracking in the medical literature, 

specifically for tumor and organ segmentation [9]. A recent 

formulation of this approach, called Distance-Regularized 

Level Sets [1] demonstrated an implementation of active 

contour methods without the need to reinitialize. As it is 

always preferable to have one less parameter to tune, we 

decided to implement that method as our primary form of 

deformable tracking.  

II. METHODS 

A. DETECTION 

I. HOUGH CIRCLES 

Detection of the cells is done via a Hough Circle 

Detector. A Hough Detector works by first detecting edges, 

for which we use a canny filter. See Figure 2. Afterwards, it 

counts contributions for all positions and radii of interest 

and picks the most common hypothesis. The radii of 

interest are selected manually (assuming cell size is roughly 

constant). The Hough Circle Detector is from the Python 

scikit imaging library.   
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II. TRANSMITTANCE 

MICROSCOPY 

As seen below in Figure 2, the Hough circle detector can 

successfully detect red blood cells, even with very bad edge 

detection from the canny edge detector. In the image below, 

from the Yeh Lab at Stanford (data from Katie Amberg-

Johnson), we see the detector able to handle a very 

challenging case in normal transmittance microscopy. All 

four blood cells, despite their inner geometry are detected 

correctly and identified. Even the localization is very good,  

III. REFLECTANCE 

MICROSCOPY 

The data from the microfluidics experiments, however, is 

from a different from of microscopy, namely reflectance 

microscopy. In this experimental condition the illumination 

interacts with the geometry of the red blood cells to a much 

higher degree, creating many false edges. In this tracking 

sequence, only the top one cell is chosen to be tracked and 

detected. Additionally, multiple radii sizes are chosen and 

all of them are used to create an initial level set for the 

sequence (see next section).  

 

FIG. 2.  This is an example of red blood cell detection in transmittance 
microscopy, with a circular Hough detector and four red blood cells. The 

left frame is the original image, the middle frame is the canny detected 

edges, and the right frame are the top 4 detected Hough circles overlaid on 
top of a washed out version of the original image.  

 

FIG. 3. This is an example of red blood cell detection in reflectance 
microscopy, with a circular Hough detector and two red blood cells. The 

left frame is the original image, the middle frame is the canny detected 

edges, and the right frame are the detected Hough circles overlaid on top 
of a washed out version of the original image.  
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B. TRACKING 

For tracking, we only worked off the microfluidics 

waveguide dataset (as seen in Figures 1 and 3). This is a 

dataset which requires deformable tracking as the 

waveguide can sometimes squeeze the cell.  

In the case of deformable tracking, we implemented the 

Distance Regularized Level Set Evolution paper [1]. Our 

implementation was done from scratch in Python but we 

mirrored at the original authors MATLAB implementation 

to catch errors and ensure correct implementation.  

I. LEVEL SET METHODS 

Level set methods are a class of contour detection where 

instead of tracking the edges directly, edges are encoded 

implicitly through a signed distance field. In a signed 

distance field, every pixel stores its distance from the 

closest edge. Negative values are “inside” and positive 

values are considered “outside”. Therefore, the value 

matching numerical zero is the position of the edge. 

 In active contour methods, the segmentation is seeded 

with an initial boundary region, from which it is iteratively 

evolved towards the local minima of edges. There are 

multiple parameters, including convergence step size, but 

the one found most important was alpha. Alpha controls 

how the level set evolves, and also which direction. 

II. INITIALIZATION 

Using the Hough circle as described in the detection 

section, the level set is seeded with the interior of the 

Hough circle as the inside of the cell. That is, all pixels 

inside all valid Hough circles are used. Then it is evolved to 

convergence.  
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III. LEVEL SET EVOLUTION 

Level sets can either be evolved outwards (from a small 

seed region) or inwards (from an oversized seed region). To 

handle this explicit restriction, we always either dilate or 

erode the initialization to make sure the initialization is 

correct for which form of level set evolution we’re using. 

When we’re evolving outward, we shrink the initialization 

region; when we’re evolving inward, we grow it.  

We tried examples of both evolution methods and with 

parameter tuning were able to obtain similar results. 

However, we found that the level set method sometimes 

locks onto the edges of the image frame, so we preferred 

the outward growing method for most of our experiments.  

The level set evolution can be seen as a gradient-descent 

search for closest edges, and in the low resolution, noisy 

images we used, there are many edges which can satisfy a 

local search, so different initializations can sometimes lead 

to different results, as seen in Figure 3.  

 

In order to perform tracking, one can simply take the 

previous frames’ level set, erode or dilate it, and use that as 

the seen for the next frame to perform level set evolution. 

This behavior, repeated iteratively, leads to the behavior 

shown in Figure 1.  

 

FIG. 4 This is an example of an  image (top left) and its edge indicator 
function (where white are stronger edges) (log scale) (bottom left). The 

middle columns are the Hough circle initializers, eroded and dilated. The 

right column shows the final converged level sets for both conditions.  

IV. POST-PROCESSING 

There were two main issues that required post-processing 

in additional to the tracking method: false edges contributed 

by the waveguide and run-away errors due to image noise. 

We implemented methods to address both. 

 

In order to handle interruption from the waveguide, we 

used a mean image over the image sequence (as the 

microscope is stationary) in order to provide an easy 

background image. However, this background image 

sometimes contains real edges from the image sequence, so 

we had to choose a blending factor for the mean image. We 

finally settled on 15%. This is shown in Figure 5.  

 

FIG. 5 An example showing the change of edge indicator functions 

when subtracting the mean image. The original is on the left and the 

subtracted image is on the right. As is clearly visible, the subtraction 
removed the waveguide but also creates false new edges and removes 

some of the real cell data as well.  

Additionally, sometimes the edges run catch onto another 

cell or the waveguide and shown runaway behavior. To 

handle this, we run another Hough transform (either on the 

image data or the level set image, we found both worked) to 

detect the cell. We then use an oversized version of this 

Hough circle as a boundary limit, and remove all level set 

data outside the circle. This keeps the contours tracking 

even in the case of noisy edges. See Figure 6 below.  

 

FIG. 6 Runaway behavior of level set tracking. Sometimes the 
contours’ poor converge (bottom left) can lead to disastrous results later 

(bottom right). Using the Hough circle post-processing technique 

described, we’re able to control the errors in the level set and have the 
contained behavior seen in the top row.  

 

III. RESULTS 

Basic tracking results can be seen in Figure 1, where five 

example frames from an 84 frame sequence are shown (#1, 

#23, #45, #58, #84). Successful tracking is seen in this 

example as the cell starts roughly correct, and then 

transitions across the waveguide correctly. This required a 

combination of background Hough Circle initialization, 

background subtraction (15% of mean image), and Hough 

Circle on Level Set to post-process growth. This was done 

with an alpha = -0.8 (which is an outward growing level 

set), and dilation with a disk of size 3 was used between 

time-steps. This was the most successful run on this dataset; 

a discussion of more challenging issues is brought up in 

section IV A. 
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A. TRACKING SIZE 

As a way to test how robust the tracking is, we plotted 

the size of tracked cell (in pixels) across the test frame 

sequence. Notable errors occur when the cell begins to 

interact with the waveguide (#30-#45) and when it gets 

near the edge of the frame (#75-#82). However, both errors 

are still fairly small relative to the side of the cell.  

 

FIG. 7.  A graph showing the consistency of a single tracked cell across 

an image sequence, as the cell crosses a waveguide at around frame 

40.The sequence is that from Figure 1.  

IV. DISCUSSION/CHALLENGES 

A. PARAMETER TUNING 

One of the biggest challenges in using this algorithm 

correctly is the enormous number of open parameters: how 

much of the mean image is subtracted, how high is alpha 

set, how large are the cells, how aggressive should the post-

processing circles remove growing data and how much 

uncertainty is there in-between frames. 

 

Some examples of poor parameter setting are shown in 

Figure 8. If there were additional time, it’d be nice to either 

find a more robust set of parameters or simply automate 

their setting. By exploring how this algorithm works on a 

larger data set, this should be possible.  

 

 

 

 

FIG. 8 Various answers given by the algorithm for the same exact 
frame (#58) depending on parameter tuning.   

B. WAVEGUIDE 

The waveguide is a large conflating factor in the edge 

indicator function, which drives all the segmentation. By 

exploring more robust methods of removing the waveguide 

(such as more sophisticated background subtraction 

techniques), we believe that our results would be better. 

  

The challenging part of the waveguide behavior is that 

the waveguide often grabs the cell, and these are the most 

interesting scenarios. This is also the location of most 

expected deformation. Thus our handling of the waveguide 

must be very careful as to not remove the useful cell edges 

which are present in that area of the frame. 

C. NON-UNFORM LIGHTING 

Using the waveguide microfluidics data, we’re in a 

reflective microscopy condition, and this makes simple 

contour tracking difficult. Compared to transmissive 

microscopy, where the edges are often illuminated and 

clear, reflective microscopy often has much murkier edges. 

As the edge indicator function is the basis of the 

segmentation method, this often causes erroneous 

segmentation and tracking.  

 

There are two interesting methods we’d like to explore in 

order to handle this non-unform lighting. The first is to 

explicitly model and estimate the lighting, so we can create 

an edge indicator function that is more robust. For example, 

in these sequences, the top of the cell is always illuminated, 

and all edges there should be bright, while the bottom of the 

cell edge should be dark. If this information can be brought 

into the edge indicator function, we believe our tracking 

would significantly improve. 

 

Another method we’d like to try would be to use a 

machine-learned edge indicator function. These are well 

documented [2] [3] in the computer vision literature, using 

Trees, SVMs, and CNNs. They’re used in cases such as 

semantic segmentation, where image edges doesn’t have a 

clear mapping to what people perceive as object edges. We 
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have a similar challenge.  In our specific case, with some 

manual cell annotation, machine learned edge detectors 

might be used to handle both the non-uniform lighting and 

the waveguide with one fell swoop.  

D. OTHER TRACKING METHODS 

In addition to the deformable tracking, it’d be interesting 

to explore more long-term optical flow methods, which 

keep a history of cell appearance and can handle distortions 

that span multiple frames and are sometimes occluded.  

Additionally, optical flow methods operate on image 

differences and might behave better in such low quality 

images.  
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