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Abstract

In this project, we are exploring the application of ma-

chine learning to solving the classical stereoscopic corre-

spondence problem. We present a re-implementation of sev-

eral state-of-the-art stereo correspondence methods. Addi-

tionally, we present new methods, replacing one of the state-

of-the-art methods for stereo with a proposed technique

based on machine learning methods. These new methods

out-perform existing heuristic baselines significantly.

1. Introduction

Stereoscopic correspondence is a classical problem in

computer vision, stretching back decades. In its simplest

form, one is given a calibrated, rectified image pair where

differences between the pair exist only along the image

width. The task is to return a dense set of corresponding

matches. An example image pair is shown in figure 1.

While this task may seem straightforward, the primary

challenge comes from challenging, photo-inconsistent parts

of the image. Parts of the image will often contain ambigu-

ous regions, a lack-of-texture, and a photo-metric mismatch

for a variety of reasons (specular reflections, angle of view,

etc.).

This field is well studied, and there exist many stan-

dard datasets, such as Middlebury [18] and KITTI [6].

Both of these datasets contain many rectified left-right pairs,

along with corresponding ground truth matches. The former

dataset contains high resolution images from largely indoor

scenes, and comes from using a method of dense structured

light correspondence method. In contrast, the KITTI dataset

contains much lower resolution images, and consists of out-

door data gathered from a vehicle perspective. Additionally,

the KITTI dataset’s annotations come from a LIDAR tech-

nique, and are generally sparse. While KITTI seems more

popular based on the size of their leader-board, the dense

annotations available in Middlebury [18] are useful for the

problem tackled in this paper, and our results are only re-

Figure 1. An example of a stereo left-right pair from the Middle-

bury 2014 dataset [18]. The motorcycle scene will be consistently

used through this paper as a visual example result .

ported there.

The interest in this problem has important practical ap-

plication in autonomous vehicles and commercial applica-

tions. For example, the KITTI dataset was formed to test

if low-cost stereoscopic depth cameras to replace high-cost

LIDAR depth sensors for autonomous vehicle research. In

a different field, commercial depth sensors such as the orig-

inal Microsoft Kinect and Intel RealSense R200 use stereo-

scopic correspondence to resolve depth for tracking peo-

ple and indoor reconstruction problems. As such, improved

methods for stereoscopic correspondence have wide appli-

cation and use.

2. Related Work

2.1. Previous Work

In the field of stereo matching, one of the recent innova-

tions in the past few years was the use of convolutional neu-

ral networks in improving the quality of matching results

[21]. At the time of it’s announcement at CVPR 2015, it

was the top performer in both standard datasets. Even at the

present day, all better performing methods on the Middle-

bury leaderboard use the Matching Cost CNN (MC-CNN)

costs as a core building block. Their primary contribution is

to train a convolutional neural network (CNN) to replace the

block-matching step of a stereo algorithm. That is, instead
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Figure 2. The architecture and algorithm flow for state-of-the-art

methods in stereo. They first use the MC-CNN cost function [21],

then combine those results with cross-based aggregation [22], and

share them with neighbors using semi-global matching [7]. Meth-

ods in dashed lines are heuristic methods, while the ones with solid

lines use a machine-learned method.

of using a sum of absolute differences cost such as

Cost(source, target) =
∑

i

∑

j

|sourceij − targetij |

or a robust non-parametric cost function such as Census

[20]

R(P ) = ⊗ζ(P, Pij)

Cost(source, target) = popcnt(sourceij ⊕ targetij)

the authors of [21] learn a network to compute a

Cost(source, target) metric based on the ground truth

available from stereoscopic correspondence datasets. An

example of their network architecture is shown in figure 3.

However, in order to obtain their final result, they use

a combination of algorithms to select an optimum match.

Namely, they use a combination of their cost metric [21],

cross-based aggregation [22], and semi-global matching

[7]. This flow is shown in figure 2. We hypothesize that

a short-coming of this state-of-the-art method is that two

of the techniques used in the algorithm flow make use of a

heuristic method for completing a certain task. We hope to

build on the success of the MC-CNN method and use gradi-

ent based learning [12] to replace other components of the

stereo algorithm. The value in picking this specific classifi-

cation algorithm is that it has the ability for us to eventually

design an end-to-end gradient-learned system that trains an

MC-CNN along with our proposed system. The goal for

the project is first implement these baseline algorithm meth-

ods, and then begin to to test and design algorithms and

methods to replace one of the two heuristic algorithms in the

traditional stereoscopic pipeline, namely semiglobal match-

ing [7] or cross-based aggregation [22]. In this report, we

only present methods for replacing semiglobal matching,

but not yet cross-based aggregation.

Figure 3. The matching architecture of [21], the current state-of-

the-art in stereo matching.

2.2. Key Contributions

1. A fast, flexible implementation of stereo matching

We present a new, from-scratch implementation of

state-of-the-art methods in stereo matching, including

Census [20], semiglobal matching [7], cost-volume fil-

tering [10]. Along with standard methods for hole fill-

ing, like those used in MC-CNN [21], and many outlier

removal methods [16]. The implementation is cross-

platform, C++, multi-threaded, and uses no libraries

except those for loading and saving images. It is fast,

and produces competitive RMS error results on stan-

dard datasets. See section 3.1.

2. A machine-learned method for correlation selec-

tion We’ve implemented and tested several semiglobal

matching replacement architectures, trained them on

the Middlebury training data, and demonstrated that

they perform significantly better on out-of-bag exam-

ples than semiglobal matching. See section 4.

3. Baseline Implementation

3.1. C++ Baseline

First, we implemented stereo matching baselines using

current, non-machine learned methods. The stereo algo-

rithms described below were implemented from scratch, in

C++, with no external libraries outside of image loading.

The performance of our baseline is later summarized in ta-

ble 1.

An example left-right pair is show in 1. We’re using

quarter-sized training images from the latest Middlebury

dataset [18]. These are roughly 750x500 pixels in resolu-

tion. The results from our algorithm are compared to the

ground truth visually in figure 4 and quantitatively in table

1. An elaboration of the different papers and methods im-

plemented for each section is described below. The code

is all C++11, and compiles on Visual Studio 2013 and gcc,

with no external libraries. Threading is implemented via

OpenMP [15] to parallelize cost computation across all pix-
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Figure 4. The image on the left is ground truth for the motorcycle scene in 1. The image on the right is the results of our semi-global

matching pipeline with naive hole filling as described in section 3.1. For visual comparison, occluded and missing ground truth pixels from

both images are masked out.

els in a given scanline. This cost accumulation is the pri-

mary computational bottleneck in the system so paralleliz-

ing that component is enough to provide sufficient scaling

across processor cores.

3.1.1 Cost Computation

As a baseline method of cost computation, we’ve imple-

mented both standard sum of absolute differences, and the

robust Census metric [20]. Census was recently tested and

shown to be the best performing stereo cost metric [8]. The

weighted sum of absolute differences and Census was addi-

tionally state-of-the-art for Middlebury until a year or two

ago [13]. The state of the art in this space is MC-CNN

method [21], which implemented a CNN algorithm to re-

place traditional methods. However, since our project fo-

cuses on implementing neural networks in other parts of the

stereo pipeline, re-implementing this cost metric is not a

high priority.

Specifically, we implemented Census with 7x7 windows,

which allows us to exploit a sparse census transform [5],

and fit the result for every pixel into 32-bits. This enables

efficient performance with the use of a single popcnt in-

struction on modern machines.

3.1.2 Region Selection

For our region selection baseline, we’ve implemented both

box correlation windows and weighting with a non-linear

smoothing algorithm such as the bilateral filter [19]. This

was inspired recent unpublished ECCV 16 submissions

on the Middlebury leader-board, which claim to replace

the popular cross-based [22] with a smooth affinity mask

method like a bilaterial filter, as first shown in [10].

3.1.3 Propagation

In order to perform propagation across the image, we’ve im-

plemented semi-global matching [7], in full, as described in

the original paper. We chose to perform 5-path propagation

for each pixel, as it represents a row causal filter on the im-

age, using a pixel’s left, right, top, top-left, and top-right

neighbors. This produces an answer that satisfies the cost

function of Hirchmuller [7]

E(D) =
∑

p

(C(p,D(P )) (1)

+
∑

q

P1 · 1{D(p)−D(q)} = 1

+
∑

q

P2 · 1{D(p)−D(q)} > 1

Additionally, we added naive hole filling by propagating

pixels from left-to-right, in order to fill occluded regions.

This is a naive metric, but is a large part of the hole filling

used in the state of the art work [21].

4. Learning Propagation

Most papers in the KITTI dataset build on top of the

successful method of semi-global matching [7], which is

an algorithm for propagating successful matches from pix-

els to their neighbors. The goal of this part of the project

was to replacing this function with either a standard neural

network, or recurrent neural network. Depending on one’s

perspective on what operation semiglobal matching is per-

forming, there is a wide array of neural network architec-

tures that may be amenable to replace it. An overview of

the formulations is shown in figure 5.

The first and most straightforward view of what the en-

ergy function, as stated in equation 1, is that it regularizes a
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Figure 5. An example of two different ways to formulate semi-

global matching as a classification task. The one on the left is

explored in section 4.1, while the one on the right is explored in

4.2.

single pixel’s correlation curve into a more intelligent one.

This view is fairly simple, doesn’t incorporate any neigh-

borhood information, but in our testing was the most suc-

cessful model. This is elaborated in section 4.1.

A second view of what semiglobal matching does in

practice is that is regularizes an entire scanline at a time,

performing scanline optimization and producing a robust

match for an entire set of correlation curves at once. This

was the view we took when building models in section 4.2.

A third view of what semiglobal matching does is it

serves as a way of remembering good matches, and propa-

gating their information to their neighbors. This is straight-

forward and almost certainly what semiglobal matching

does. This would require a pixel recurrent neural network

such as that in [14]. In our limited time and testing, we

were unable to get any of these architectures to converge

and hence have excluded them from this paper. However,

our primary focus was on building a bidirection RNN with

GRU [3] activations. In practice, small pixel patches didn’t

converge while large patches were not able to fit into the

memory of the machines we had available for training.

For testing and training, we gather a subset of the Mid-

dlebury images [18], and split into into a random training

and testing set with a 80%-20% split. The unseen samples

are then used for evaluation. Middlebury provides 15 im-

ages for training and 15 for evaluation. For the classifiers in

section 4.1, this results in roughly 500,000 annotations per

image (using quarter sized images), and 500,000 tests of the

network. While for the classifiers in section 4.2, this results

in 500,000 annotations computed over about 1,000 runs of

the network (since it computes 500 outputs at the same

time). See below for details of how this is implemented.

4.1. 1D Smoothing

One straightforward view of semi-global matching is

simply as regularization function on top of a pixel’s cor-

relation curve. A correlation curve is the set of matching

costs for a single pixel and it’s candidates. If this input is

negated, and fed a softmax activation function, as used to

train many neural networks, it treats the values as unnor-

malized log probabilities, and selects the maximum (which

would be the candidate with lowest matching cost).

Li = − log(
efyi∑
j e

fi
)

Our original implementations for this method were all

straightforward multi-layer perceptions (MLP), using a one,

two, or three layer neural network to produce a smarter

minimum selection algorithm. However, no matter the loss

function, shape, dimensions, regularization, or initialization

function, we were unable to get any MLP to converge. That

is, using a 0-layer neural network (the input itself) was bet-

ter than any learned transformation to that shape and size.

Instead, we found success by using a one dimensional

convolutional neural network as shown in figure 6. We sus-

pect a CNN was able to handle this task better, as one bank

of convolutions could learn an identity transform, while oth-

ers could learn feature detectors that incorporated interest-

ing feedback into that identity transform. In comparison, a

randomly initialized fully connected network may struggle

to learn a largely identity transform with minor modifica-

tions. We implemented the neural network on top of Keras

[4] and TensorFlow [1]. We additionally learned several

non-gradient based classifier baselines such as SVMs and

random forests using scikit-learn [17].

4.2. 2D Smoothing

As shown in figure 5, there is an alternative concept of

how semiglobal propagation. This one incorporates pixel

neighborhoods, and seems a more natural fit for the energy

function presented in equation 1. For this formulation of

a neural network, the correlation curves of an entire scan-

line are reshaped into an image in disparity cost space no-

tation is described in figure 7. We then create a model us-

ing a two-dimensional convolutional neural network [12] on

top of these disparity cost space images The top level is a

column-wise softmax classifier of the same size as the input

dimensions. In order to implement this in TensorFlow [1],

we first pass in a single disparity image as a single batch.

We run our convolutional architecture over this model, and

then reshape the output into pixel-many ”batches” for each

of which we have a label. This allows the built-in softmax

and cross-entropy loss formulations to work out-of-the-box

with no hand-made loops.
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Figure 6. An architectural view of our most successful machine

learned method, a 1D CNN for predicting better minimums in cor-
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Figure 7. A brief visual diagram of a Cost Image for single scan-

line of stereo matching. Each pixel contains the cost of matching

for that value, at that image pixel. Across the entire image, there

exists a cost volume across all scan-lines in a stereo pair, our pro-

posed architectures only deal with a known, discrete number of

cost images.

5. Experiments

5.1. Baseline Method

We tested our baseline C++ implementation of modern

stereo matching for both time and quality of output. Specif-

ically, we focused on simply a single Middlebury training

image (the Motorcycle) to validate that our results were

within expectation for a stereo matching baseline. Our two

key metrics were runtime and root-mean-squared error for

all the dense, all-pixel label ground truth. This is just one

of the metrics for Middlebury, but is one that measures the

Model RMS Error Runtime

Census 28.92 1.2s

SGBM 28.12 3.1s

SGBM + BF 32.8 5.8s

OpenCV SGBM 38.00 0.9s

MC-CNN (acct) 27.5 150s
Table 1. A summary table of numerical results on the training Mo-

torcycle image. The error metric is root-mean-squared error in

disparity space, and the run-times are on a quad-core i7 desktop.

The first three lines are baseline implementations implemented by

us, while the last two are standard algorithms available on the

dataset website [18]. The MC-CNN results were run on a GPU

[21] (which were on an GPU).

quality of all pixels predicted by the classifier. A sum-

mary table is shown in table 1. We show that our baseline

implementation is on the same order of magnitude as the

SSE-optimized, hand-tuned implementation of semiglobal

matching available from OpenCV [2]. We believe that both

the performance and accurate matching is a function of us

using the robust and fast ADCensus [13] [20] weighted

cost function. Since the primary focus of this project as

to simply provide a flexible baseline for quickly generating

data for the machine learned methods in section 4, we did

not spend much time micro-optimizing or tuning algorithm

hyper-parameters. However, if one wished to tune this al-

gorithm there are dozens of knobs, including the relative

weighting of absolute differences and Census, the regular-

ization strengths of P1 and P2 from semiglobal matching,

and the weights used in the bilateral filter.

5.2. Learned Propagation methods

In the scope of testing the various propagation classifiers,

we adopt two different evaluation metrics. The first is the

traditional training/test split used in machine learning meth-

ods. The other is the RMS error metric used for stereo algo-

rithm evaluation. A result comparing standard methods and

our proposed classifiers on test data is shown in figure 8.

We see that the one-dimensional CNN as presented in

section 4.1 and shown in figure 6 outperforms the cur-

rent standard methods for smoothing matches. That is,

when fed with the ADCensus correlation curves generated

by our matching algorithm, the neural network generates

predictions that are much more accurate than the heuristic

semiglobal matching method used in state-of-the-art papers

such as MC-CNN [21]. This result is even true when we

take the network’s predictions back to the matching algo-

rithm and use it to generate a full correspondence image.

Even though the neural network (currently) lacks the ability

to make subpixel accurate guesses, it generates lower RMS

error than standard methods like Census and semiglobal

matching, which do have subpixel matching built into the

baseline.
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Figure 8. Numerical results on the out-of-bag testing data across

the a subset of the Middlebury [18] images.

Model Out-of-bag Accuracy

Census 67.7%

SGBM 69.2%

1D CNN Training 76.4%

1D CNN Test 75.8%

2D CNN Training 58.5%

2D CNN Test 55.4%
Table 2. An summary table of numerical results when testing on a

large batch of Middlebury testing images

Additionally, as can be seen in table 2, the 1D CNN

model is not yet exhibiting overfitting on out-of-bag sam-

ples, and might benefit from additional training time. It

can also be seen that our best 2D CNN architecture dras-

tically underperforms even the standard baselines. While

there may be some more optimal 2D CNN architecture than

the one we tried, our poor initial results made us moved to-

wards trying to build an RNN method instead. However,

we did not have enough time to finish designing and train-

ing our RNN models for replacing semiglobal matching.

Another interesting experimental result is the qualitative

performance of the classifier models. As shown in figure

9, the classification-based models sometimes generate com-

pletely erroneous results for parts of the image. While Cen-

sus will fail to generate a result sometimes, and semiglobal

matching learns a smooth transformation. In contrast, while

the classification models have lower error, they sometimes

predict very non-smooth results, as the classifier is run per

pixel. This is suggestive that a classifier, such as an RNN,

that accounts for neighborhood information may perform

even better. Also, while we did not combined semiglobal

matching with our 1D CNN, it is possible to use the nor-

malized probabilities from the neural network together with

semiglobal matching to overcome this lack of smoothness

and achieve perhaps an even better result.

(a) Census and Semiglobal Results

(b) Random Forest and 1D CNN Results

Figure 9. A qualitative example using the presented classifiers. It

can seen that the original cost method (Census) is able to resolve

certain parts of the scene. On the other hand, semiglobal propaga-

tion is able to in-paint the image and generate a smooth disparity

image. On the other hand, the errors made by the two classifier

models, although having better accuracy and RMS error than the

heuristic methods, sometimes generate what looks like completely

erroneous results.

6. Conclusion

We have presented a new method for taking stereoscopic

correlation costs and smoothing them into a more refined

estimate. This method is gradient-trainable, and outper-

forms the semiglobal matching [7] heuristic technique used

in state-of-the-art methods such as MC-CNN [21]. This

leads support to the hypothesis proposed in the introduc-

tion, which is that continuing to replace components of the

stereo matching pipeline with machine-learned models is a

way to improve their performance. Since the models pre-

sented here were done with ADCensus costs [13] and not

MC-CNN costs [21], and we did not have enough time to

train on the full Middlebury dataset [18], we don’t present a

new state-of-the-art for stereoscopic correspondence. How-

ever, we believe that these results suggest that one may be

possible by simply running the proposed techniques with

MC-CNN on the full dataset.

In addition, we’ve created a new, simply, fast and cross-

platform stereo correspondence implementation. We’ve

shown it to be about as fast as the one in OpenCV, and to

produce results that are notably more accurate. We hope

this can be used as a base for others to experiment with

other stereoscopic correspondence ideas without having to

dive into complicated OpenCV SSE code or deal with slow

MATLAB implementations.
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Figure 10. An example of a pixelwise RNN from [14], a gradient-

learned method for propagating information across images.

Figure 11. An example of a spatial transformer for region selection

[11], a gradient-learned method for region selection.

7. Next Steps

To continue this theme of research, we wish to explore

additional architectures for stereo correspondence algo-

rithms that are trained with error gradients. While the one-

dimensional CNN presented here works well, it isn’t able

to capture the neighborhood information that semiglobal

matching can. To incorporate neighborhood information,

we’d like to explore recurrent neural network models, which

we began to design but were unable to get running in time

for this project submission. By coupling our 1D-CNN ar-

chitecture with either a spatial transformer networks front-

end [11], or a recurrent neural network backend [3] [9] , we

might produce a new state-of-the-art algorithm for the clas-

sic stereo problem. Examples of these models are shown in

figures 10 and 11.

8. Code

Code is made available at https://github.com/

leonidk/centest. Running the stereo matching algo-

rithm is straightforward and documented in the README,

but running the learning algorithms (found in the learning/

folder) varies depending on the method.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
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